
MicroRNA-622 functions as a tumor suppressor by targeting K-Ras and enhancing the anticarcinogenic effect of resveratrol
Author(s) -
Zhiyuan Han,
Qiaoyuan Yang,
Binbin Liu,
Jianjun Wu,
Yuanqi Li,
Chengfeng Yang,
Yiguo Jiang
Publication year - 2011
Publication title -
carcinogenesis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.688
H-Index - 204
eISSN - 1460-2180
pISSN - 0143-3334
DOI - 10.1093/carcin/bgr226
Subject(s) - carcinogenesis , resveratrol , microrna , transfection , cell growth , gene knockdown , cancer research , cell culture , suppressor , chemistry , viability assay , small hairpin rna , downregulation and upregulation , microbiology and biotechnology , cell , biology , cancer , biochemistry , genetics , gene
Aberrant expression of microRNA (miRNA) has been previously demonstrated to play an important role in a wide range of cancer types and further elucidation of its role in the mechanisms underlying tumorigenesis, anticarcinogenesis and potential chemotherapeutics is warranted. We chose the anti-benzo[a]pyrene-7,8-diol-9,10-epoxide-transformed human bronchial epithelial cell line 16HBE-T to study miRNAs involved in anticarcinogenesis. In resveratrol-treated cells, we found that miR-622 was upregulated, whereas it was downregulated in 16HBE-T cells, suggesting that miR-622 potentially acts as a tumor suppressor. Increasing the level of miR-622 by transient transfection-induced inhibition of proliferation and G(0) arrest in 16HBE-T cells and the lung cancer cell line H460 as demonstrated by cell viability and cell cycle analysis. MiR-622 dramatically suppressed the ability of 16HBE-T cells to form colonies in vitro and to develop tumors in nude mice. According to bioinformatics analysis, K-Ras messenger RNA was predicted as a putative miR-622 target; this was confirmed by western blot and luciferase reporter assays. Cell growth retardation was inhibited upon knockdown of K-Ras and an increase in the level of miR-622 in 16HBE-T cells. Furthermore, miR-622 inhibitor partially impaired the growth of 16HBE-T cells as demonstrated by luciferase reporter activity and K-Ras protein expression in 16HBE-T cells. In summary, miR-622 functions as a tumor suppressor by targeting K-Ras and impacting the anticancer effect of resveratrol. Therefore, miR-622 is potentially useful as a clinical therapy. MiR-622 impacts the K-Ras signal pathway and the potentially anticarcinogenic or chemotherapeutic properties warrant further investigation.