z-logo
open-access-imgOpen Access
N-Demethylation accompanies α-hydroxylation in the metabolic activation of tamoxifen in rat liver cells
Author(s) -
David H. Phillips,
Alan Hewer,
Martin N. Horton,
Kathleen J. Cole,
Paul L. Carmichael,
Warren Davis,
Martin R. Osborne
Publication year - 1999
Publication title -
carcinogenesis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.688
H-Index - 204
eISSN - 1460-2180
pISSN - 0143-3334
DOI - 10.1093/carcin/20.10.2003
Subject(s) - tamoxifen , hydroxylation , guanine , adduct , chemistry , demethylation , dna adduct , biochemistry , dna , stereochemistry , medicine , enzyme , nucleotide , dna methylation , gene expression , organic chemistry , cancer , breast cancer , gene
Previous work has shown that a major route of activation of tamoxifen to DNA-binding products in rat liver cells is via alpha-hydroxylation leading to modification of the N(2)-position of guanine in DNA and to a lesser extent the N(6)-position of adenine. Improved resolution by HPLC has now identified two major adducts in rat liver DNA, one of them the aforementioned tamoxifen-N(2)-guanine adduct and the other the equivalent adduct in which the tamoxifen moiety has lost a methyl group. Treatment of rats or rat hepatocytes with N-desmethyltamoxifen gave rise to the second adduct, whereas treatment with tamoxifen or alpha-hydroxytamoxifen gave rise to both. Furthermore, N,N-didesmethyltamoxifen was found to be responsible for an additional minor DNA adduct formed by tamoxifen, alpha-hydroxytamoxifen and N-desmethyltamoxifen. The involvement of metabolism at the alpha position was confirmed in experiments in which [alpha-D(2)-ethyl]tamoxifen, but not [beta-D(3)-ethyl]tamoxifen, produced reduced levels of DNA adducts. Tamoxifen N-oxide and alpha-hydroxytamoxifen N-oxide also gave rise to DNA adducts in rat liver cells, but the adduct patterns were very similar to those formed by tamoxifen and alpha-hydroxytamoxifen, indicating that the N-oxygen is lost prior to DNA binding. These and earlier results demonstrate that in rat liver cells in vivo and in vitro, Phase I metabolic activation of tamoxifen involves both alpha-hydroxylation and N-demethylation, which is followed by Phase II activation at the alpha-position to form a highly reactive sulphate. Detection of tamoxifen-related DNA adducts by (32)P-postlabelling is achieved with >90% labelling efficiency.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom