z-logo
open-access-imgOpen Access
Regulation of lysosomal trafficking of progranulin by sortilin and prosaposin
Author(s) -
Huan Du,
Xiaolai Zhou,
Tuancheng Feng,
Fenghua Hu
Publication year - 2021
Publication title -
brain communications
Language(s) - English
Resource type - Journals
ISSN - 2632-1297
DOI - 10.1093/braincomms/fcab310
Subject(s) - lysosome , frontotemporal lobar degeneration , microbiology and biotechnology , microglia , biology , haploinsufficiency , phenotype , biochemistry , immunology , medicine , inflammation , enzyme , frontotemporal dementia , gene , dementia , disease
Haploinsufficiency of the progranulin protein is a leading cause of frontotemporal lobar degeneration. Accumulating evidence support a crucial role of progranulin in the lysosome. Progranulin comprises 7.5 granulin repeats and is known to traffic to lysosomes via direct interactions with prosaposin or sortilin. Within the lysosome, progranulin gets processed into granulin peptides. Here, we report that sortilin and prosaposin independently regulate lysosomal trafficking of progranulin in vivo. The deletion of either prosaposin or sortilin alone results in a significant decrease in the ratio of granulin peptides versus full-length progranulin in mouse brain lysates. This decrease is further augmented by the deficiency of both prosaposin and sortilin. A concomitant increase in the levels of secreted progranulin in the serum was observed. Interestingly, while the deletion of both prosaposin and sortilin totally abolishes lysosomal localization of progranulin in neurons, it has a limited effect on lysosomal trafficking of progranulin in microglia, suggesting the existence of a novel sortilin and prosaposin independent pathway mediating progranulin lysosomal trafficking. In summary, our studies shed light on the regulation of lysosomal trafficking and processing of progranulin in vivo.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom