z-logo
open-access-imgOpen Access
Questioning the definition of Tourette syndrome—evidence from machine learning
Author(s) -
Theresa Paulus,
Ronja Schappert,
Annet Bluschke,
Daniel AlvarezFischer,
Kim Ezra Robin Naumann,
Veit Roessner,
Tobias Bäumer,
Christian Beste,
Alexander Münchau
Publication year - 2021
Publication title -
brain communications
Language(s) - English
Resource type - Journals
ISSN - 2632-1297
DOI - 10.1093/braincomms/fcab282
Subject(s) - tourette syndrome , tics , psychology , tourette's syndrome , audiology , rating scale , physical medicine and rehabilitation , medicine , pediatrics , psychiatry , developmental psychology
Tics in Tourette syndrome are often difficult to discern from single spontaneous movements or vocalizations in healthy people. In this study, videos of patients with Tourette syndrome and healthy controls were taken and independently scored according to the Modified Rush Videotape Rating Scale. We included n = 101 patients with Tourette syndrome (71 males, 30 females, mean age 17.36 years ± 10.46 standard deviation) and n = 109 healthy controls (57 males, 52 females, mean age 17.62 years ± 8.78 standard deviation) in a machine learning-based analysis. The results showed that the severity of motor tics, but not vocal phenomena, is the best predictor to separate and classify patients with Tourette syndrome and healthy controls. This finding questions the validity of current diagnostic criteria for Tourette syndrome requiring the presence of both motor and vocal tics. In addition, the negligible importance of vocalizations has implications for medical practice, because current recommendations for Tourette syndrome probably also apply to the large group with chronic motor tic disorders.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom