Restoration of motor function after CNS damage: is there a potential beyond spontaneous recovery?
Author(s) -
Volker Dietz
Publication year - 2021
Publication title -
brain communications
Language(s) - English
Resource type - Journals
ISSN - 2632-1297
DOI - 10.1093/braincomms/fcab171
Subject(s) - motor function , spontaneous recovery , function (biology) , neuroscience , medicine , psychology , biology , physical medicine and rehabilitation , microbiology and biotechnology
What determines the effectiveness of neurorehabilitation approaches on the outcome of function in stroke or spinal cord injured subjects? Many studies claim that an improvement of function is based on the intensity of training, while some actual studies indicate no additional gain in function by a more intensive training after a stroke. Inherent factors seem to determine outcome, such as damage of specific tracts in stroke and level of lesion in spinal cord injured subjects, while the improvement of function achieved by an intensive training is small in relation to the spontaneous recovery. It is argued that an individual capacity of recovery exists depending on such factors. This capacity can be exploited by a repetitive execution of functional movements (supported as far as required), irrespective of the intensity and technology applied. Elderly subjects have difficulties to translate the recovery of motor deficit into function. Alternative, non-training approaches to restore motor function, such as epidural or deep brain stimulation as well as CNS repair are still in an early clinical or in a translational stage.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom