Frequency-specific neural synchrony in autism during memory encoding, maintenance and recognition
Author(s) -
Sam Audrain,
Charline Urbain,
Veronica Yuk,
Rachel C. Leung,
Simeon M. Wong,
Margot J. Taylor
Publication year - 2020
Publication title -
brain communications
Language(s) - English
Resource type - Journals
ISSN - 2632-1297
DOI - 10.1093/braincomms/fcaa094
Subject(s) - magnetoencephalography , working memory , encoding (memory) , autism , autism spectrum disorder , psychology , mnemonic , neuroscience , alpha (finance) , functional magnetic resonance imaging , task (project management) , electroencephalography , cognitive psychology , cognition , developmental psychology , construct validity , management , economics , psychometrics
Working memory impairment is associated with symptom severity and poor functional outcome in autistic individuals, and yet the neurobiology underlying such deficits is poorly understood. Neural oscillations are an area of investigation that can shed light on this issue. Theta and alpha oscillations have been found consistently to support working memory in typically developing individuals and have also been shown to be functionally altered in people with autism. While there is evidence, largely from functional magnetic resonance imaging studies, that neural processing underlying working memory is altered in autism, there remains a dearth of information concerning how sub-processes supporting working memory (namely encoding, maintenance and recognition) are impacted. In this study, we used magnetoencephalography to investigate inter-regional theta and alpha brain synchronization elicited during the widely used one-back task across encoding, maintenance and recognition in 24 adults with autism and 30 controls. While both groups performed comparably on the working-memory task, we found process- and frequency-specific differences in networks recruited between groups. In the theta frequency band, both groups used similar networks during encoding and recognition, but different networks specifically during maintenance. In comparison, the two groups recruited distinct networks across encoding, maintenance and recognition in alpha that showed little overlap. These differences may reflect a breakdown of coherent theta and alpha synchronization that supports mnemonic functioning, or in the case of alpha, impaired inhibition of task-irrelevant neural processing. Thus, these data provide evidence for specific theta and widespread alpha synchrony alterations in autism, and underscore that a detailed examination of the sub-processes that comprise working memory is warranted for a complete understanding of cognitive impairment in this population.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom