Microelectrode recordings in human epilepsy: a case for clinical translation
Author(s) -
Ajai Chari,
John S. Thornton,
Martin Tisdall,
Rod C. Scott
Publication year - 2020
Publication title -
brain communications
Language(s) - English
Resource type - Journals
ISSN - 2632-1297
DOI - 10.1093/braincomms/fcaa082
Subject(s) - microelectrode , neuroscience , context (archaeology) , ictal , electroencephalography , epilepsy , multielectrode array , local field potential , psychology , computer science , chemistry , electrode , biology , paleontology
With their ‘all-or-none’ action potential responses, single neurons (or units) are accepted as the basic computational unit of the brain. There is extensive animal literature to support the mechanistic importance of studying neuronal firing as a way to understand neuronal microcircuits and brain function. Although most studies have emphasized physiology, there is increasing recognition that studying single units provides novel insight into system-level mechanisms of disease. Microelectrode recordings are becoming more common in humans, paralleling the increasing use of intracranial electroencephalography recordings in the context of presurgical evaluation in focal epilepsy. In addition to single-unit data, microelectrode recordings also record local field potentials and high-frequency oscillations, some of which may be different to that recorded by clinical macroelectrodes. However, microelectrodes are being used almost exclusively in research contexts and there are currently no indications for incorporating microelectrode recordings into routine clinical care. In this review, we summarize the lessons learnt from 65 years of microelectrode recordings in human epilepsy patients. We cover the electrode constructs that can be utilized, principles of how to record and process microelectrode data and insights into ictal dynamics, interictal dynamics and cognition. We end with a critique on the possibilities of incorporating single-unit recordings into clinical care, with a focus on potential clinical indications, each with their specific evidence base and challenges.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom