z-logo
open-access-imgOpen Access
Nerve function and dysfunction in acute intermittent porphyria
Author(s) -
Cindy S.Y. Lin,
Arun V. Krishnan,
MingJen Lee,
Alessandro S. Zagami,
H You,
ChihChao Yang,
Hugh Bostock,
Matthew C. Kiernan
Publication year - 2008
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awn152
Subject(s) - acute intermittent porphyria , porphyria , depolarization , subclinical infection , peripheral neuropathy , medicine , nerve conduction velocity , pathophysiology , endocrinology , neuroscience , psychology , diabetes mellitus
Acute intermittent porphyria (AIP) is a rare metabolic disorder characterized by mutations of the porphobilinogen deaminase gene. Clinical manifestations of AIP are caused by the neurotoxic effects of increased porphyrin precursors, although the underlying pathophysiology of porphyric neuropathy remains unclear. To further investigate the neurotoxic effect of porphyrins, excitability measurements (stimulus-response, threshold electrotonus, current-threshold relationship and recovery cycle) of peripheral motor axons were undertaken in 20 AIP subjects combined with the results of genetic screening, biochemical and conventional nerve conduction studies. Compared with controls, excitability measurements from five latent AIP patients were normal, while 13 patients who experienced acute porphyric episodes without clinical neuropathy (AIPWN) showed clear differences in their responses to hyperpolarizing currents (e.g. reduced hyperpolarizing I/V slope, P < 0.01). Subsequent mathematical simulation using a model of human axons indicated that this change could be modelled by a reduction in the hyperpolarization-activated, cyclic nucleotide-dependent current (I(H)). In contrast, in one patient tested during an acute neuropathic episode, axons of high threshold with reduced superexcitability, consistent with membrane depolarization and reminiscent of ischemic changes. It is proposed that porphyrin neurotoxicity causes a subclinical reduction in I(H) in AIPWN axons, whereas porphyric neuropathy may develop when reduced activity of the Na(+)/K(+) pump results in membrane depolarization.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom