z-logo
open-access-imgOpen Access
TNF-alpha reduces cerebral blood volume and disrupts tissue homeostasis via an endothelin- and TNFR2-dependent pathway
Author(s) -
Nicola R. Sibson
Publication year - 2002
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awf256
Subject(s) - tumor necrosis factor alpha , endothelin receptor , medicine , receptor , blood–brain barrier , endocrinology , pharmacology , central nervous system
TNF-alpha expression is elevated in a variety of neuropathologies, including multiple sclerosis, cerebral malaria and HIV encephalitis. However, the consequences of such high cerebral TNF-alpha expression remain unresolved. Here, using MRI, we demonstrate that a focal intrastriatal injection of TNF-alpha causes a significant, acute reduction (15-30%) in cerebral blood volume (CBV), which is dependent on TNF-alpha-type 2 receptor (TNFR2) activation, and can be ameliorated by pre-treatment with a non-specific endothelin (ET) receptor antagonist. An acute breakdown of the blood-cerebrospinal fluid barrier (B-CSF-B) and a delayed breakdown of the blood-brain barrier (BBB) were also observed using contrast-enhanced MRI. Furthermore, a significant reduction in tissue water diffusion was apparent 24 h after intrastriatal injection of TNF-alpha injection, which may indicate compromise of tissue energy metabolism. Prolonged expression of endogenous TNF-alpha, achieved through the use of an adenoviral vector expressing TNF-alpha cDNA (Ad5TNF-alpha(m)), caused a sustained depression in CBV in accordance with the single TNF-alpha bolus data. These findings identify vasoconstriction, disrupted tissue homeostasis and damage to the BBBs as adverse effects of TNF-alpha within the brain, and suggest that antagonists of the endothelin and TNF-alpha type 2 receptors may be therapeutic in TNF-alpha-associated neuropathologies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom