z-logo
open-access-imgOpen Access
Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation
Author(s) -
J. Gothe,
Stephan A. Brandt,
Kerstin Irlbacher,
S. Röricht,
Bernhard A. Sabel,
B.-U. Meyer
Publication year - 2002
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awf045
Subject(s) - phosphene , transcranial magnetic stimulation , visual cortex , psychology , stimulation , audiology , visual field , visual perception , cortex (anatomy) , neuroscience , motor cortex , medicine , perception
Any attempt to restore visual functions in blind subjects with pregeniculate lesions provokes the question of the extent to which deafferented visual cortex is still able to generate conscious visual experience. As a simple approach to assessing activation of the visual cortex, subjects can be asked to report conscious subjective light sensations (phosphenes) elicited by focal transcranial magnetic stimulation (TMS) over the occiput. We hypothesized that such induction of phosphenes can be used as an indicator of residual function of the visual cortex and studied 35 registered blind subjects after partial or complete long-term (>10 years) deafferentation of the visual cortex due to pregeniculate lesions. TMS was applied over the visual cortex in 10 blind subjects with some residual vision (visual acuity <20/400; Group 1), 15 blind subjects with very poor residual vision (only perception of movement or light; Group 2), 10 blind subjects without any residual vision (Group 3) and 10 healthy controls. A stimulation mapping procedure was performed on a 1 x 1 cm skull surface grid with 130 stimulation points overlying the occipital skull. We analysed the occurrence of phosphenes at each stimulation point with regard to frequency and location of phosphenes in the visual field. Previous experiments have shown that repetitive TMS reliably elicits brief flashes of white or coloured patches of light. Therefore, stimulation was performed with short trains of seven consecutive 15 Hz stimuli applied with an intensity of 1.3 times the motor threshold. Under such conditions, phosphenes occurred in 100% of subjects in Group 1, in 60% of Group 2 and in 20% of Group 3. Phosphene thresholds were normal, but the number of effective stimulation sites was significantly reduced in Groups 2 and 3. The results indicate that in blind subjects there is alteration in TMS-induced activation of the deafferented visual cortex or processes engaged in bringing the artificial cortex input to consciousness. The ability to elicit phosphenes is reduced in subjects with a high degree of visual deafferentation, especially in those without previous visual experience.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom