z-logo
open-access-imgOpen Access
Endothelin‐1 potently induces Leão’s cortical spreading depression in vivo in the rat
Author(s) -
Jens P. Dreier,
Jörg Kleeberg,
Gabor C. Petzold,
Josef Priller,
Olaf Windmüller,
HansDieter Orzechowski,
Ute Lindauer,
Uwe Heinemann,
Karl M. Einhäupl,
Ulrich Dirnagl
Publication year - 2002
Publication title -
brain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.142
H-Index - 336
eISSN - 1460-2156
pISSN - 0006-8950
DOI - 10.1093/brain/awf007
Subject(s) - cortical spreading depression , in vivo , endothelin 1 , neuroscience , depression (economics) , endothelin receptor , medicine , biology , receptor , microbiology and biotechnology , migraine , macroeconomics , economics
According to the 'neuronal' theory, cortical spreading depression (CSD) is the pathophysiological correlate of migrainous aura. However, the 'vascular' theory has implicated altered vascular function in the induction of aura symptoms. The possibility of a vascular origin of aura symptoms is supported, e.g. by the clinical observation that cerebral angiography frequently provokes migrainous aura. This suggests that endothelial irritation may somehow initiate one of the pathways resulting in migrainous aura. Up to now, an endothelium-derived factor has never been shown to trigger CSD. Here, for the first time, we demonstrate and characterize the ability of the vasoconstrictor and astroglial/neuronal modulator endothelin-1 to trigger Leão's 'spreading depression of activity' in vivo in rats. At a concentration range between 10 nM and 1 microM, endothelin-1 induced changes characteristic of CSD with regard to the rate of propagation, steady (direct current) potential and extracellular K(+)-concentration. A spreading hyperaemia followed by oligaemia was observed similar to those in K(+)-induced CSD. Endothelin-1 did not provoke changes characteristic of a terminal depolarization. The mechanism by which endothelin-1 generated CSD involved the N-methyl-D-asparate receptor. Cerebral blood flow decreased slightly, but significantly, before endothelin-1 generated CSD. A vasodilator (NO*-donor) shifted the threshold for CSD induction to higher concentrations of endothelin-1. Endothelin-1, in contrast to K(+), did not induce CSD in rat brain slices suggesting indirectly that endothelin-1 may require intact perfusion to exert its effects. In conclusion, endothelin-1 was found in the experiment to be the most potent inducer of CSD currently known. We propose endothelin-1 as a possible candidate for the yet enigmatic link between endothelial irritation and migrainous aura.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom