xMWAS: a data-driven integration and differential network analysis tool
Author(s) -
Karan Uppal,
Chunyu Ma,
YoungMi Go,
Dean P. Jones
Publication year - 2017
Publication title -
bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.599
H-Index - 390
eISSN - 1367-4811
pISSN - 1367-4803
DOI - 10.1093/bioinformatics/btx656
Subject(s) - computer science , data integration , software , omics , cluster analysis , data mining , differential (mechanical device) , visualization , network analysis , systems biology , data science , bioinformatics , machine learning , biology , engineering , programming language , aerospace engineering , physics , quantum mechanics
Integrative omics is a central component of most systems biology studies. Computational methods are required for extracting meaningful relationships across different omics layers. Various tools have been developed to facilitate integration of paired heterogenous omics data; however most existing tools allow integration of only two omics datasets. Furthermore, existing data integration tools do not incorporate additional steps of identifying sub-networks or communities of highly connected entities and evaluating the topology of the integrative network under different conditions. Here we present xMWAS, a software for data integration, network visualization, clustering, and differential network analysis of data from biochemical and phenotypic assays, and two or more omics platforms.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom