Linearity of network proximity measures: implications for set-based queries and significance testing
Author(s) -
Sean Maxwell,
Mark R. Chance,
Mehmet Koyutürk
Publication year - 2016
Publication title -
bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.599
H-Index - 390
eISSN - 1367-4811
pISSN - 1367-4803
DOI - 10.1093/bioinformatics/btw733
Subject(s) - computer science , set (abstract data type) , ranking (information retrieval) , node (physics) , data mining , range (aeronautics) , measure (data warehouse) , task (project management) , machine learning , theoretical computer science , materials science , structural engineering , engineering , composite material , programming language , management , economics
In recent years, various network proximity measures have been proposed to facilitate the use of biomolecular interaction data in a broad range of applications. These applications include functional annotation, disease gene prioritization, comparative analysis of biological systems and prediction of new interactions. In such applications, a major task is the scoring or ranking of the nodes in the network in terms of their proximity to a given set of 'seed' nodes (e.g. a group of proteins that are identified to be associated with a disease, or are deferentially expressed in a certain condition). Many different network proximity measures are utilized for this purpose, and these measures are quite diverse in terms of the benefits they offer.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom