NegGOA: negative GO annotations selection using ontology structure
Author(s) -
Guangyuan Fu,
Jun Wang,
Bo Yang,
Guoxian Yu
Publication year - 2016
Publication title -
bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.599
H-Index - 390
eISSN - 1367-4811
pISSN - 1367-4803
DOI - 10.1093/bioinformatics/btw366
Subject(s) - computer science , protein function prediction , gene ontology , function (biology) , set (abstract data type) , ontology , key (lock) , negative selection , selection (genetic algorithm) , machine learning , protein function , artificial intelligence , data mining , computational biology , biology , gene , programming language , genome , genetics , philosophy , gene expression , computer security , epistemology
Predicting the biological functions of proteins is one of the key challenges in the post-genomic era. Computational models have demonstrated the utility of applying machine learning methods to predict protein function. Most prediction methods explicitly require a set of negative examples-proteins that are known not carrying out a particular function. However, Gene Ontology (GO) almost always only provides the knowledge that proteins carry out a particular function, and functional annotations of proteins are incomplete. GO structurally organizes more than tens of thousands GO terms and a protein is annotated with several (or dozens) of these terms. For these reasons, the negative examples of a protein can greatly help distinguishing true positive examples of the protein from such a large candidate GO space.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom