Non-parametric modelling of temporal and spatial counts data from RNA-seq experiments
Author(s) -
Nuha Bintayyash,
Sokratia Georgaka,
St. John,
Sumon Ahmed,
Alexis Boukouvalas,
James Hensman,
Magnus Rattray
Publication year - 2021
Publication title -
bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.599
H-Index - 390
eISSN - 1367-4811
pISSN - 1367-4803
DOI - 10.1093/bioinformatics/btab486
Subject(s) - negative binomial distribution , count data , parametric statistics , computer science , rna seq , regression , spatial analysis , semiparametric model , gaussian process , regression analysis , data mining , statistics , gaussian , computational biology , transcriptome , mathematics , biology , gene expression , machine learning , gene , genetics , poisson distribution , physics , quantum mechanics
The negative binomial distribution has been shown to be a good model for counts data from both bulk and single-cell RNA-sequencing (RNA-seq). Gaussian process (GP) regression provides a useful non-parametric approach for modelling temporal or spatial changes in gene expression. However, currently available GP regression methods that implement negative binomial likelihood models do not scale to the increasingly large datasets being produced by single-cell and spatial transcriptomics.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom