z-logo
open-access-imgOpen Access
COBRAC: a fast implementation of convex biclustering with compression
Author(s) -
Haidong Yi,
Le Huang,
Gal Mishne,
C. Eric
Publication year - 2021
Publication title -
bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.599
H-Index - 390
eISSN - 1367-4811
pISSN - 1367-4803
DOI - 10.1093/bioinformatics/btab248
Subject(s) - biclustering , computer science , cluster analysis , generalization , data mining , source code , regular polygon , convex optimization , code (set theory) , row , machine learning , database , fuzzy clustering , mathematics , canopy clustering algorithm , programming language , mathematical analysis , geometry , set (abstract data type)
Biclustering is a generalization of clustering used to identify simultaneous grouping patterns in observations (rows) and features (columns) of a data matrix. Recently, the biclustering task has been formulated as a convex optimization problem. While this convex recasting of the problem has attractive properties, existing algorithms do not scale well. To address this problem and make convex biclustering a practical tool for analyzing larger data, we propose an implementation of fast convex biclustering called COBRAC to reduce the computing time by iteratively compressing problem size along with the solution path. We apply COBRAC to several gene expression datasets to demonstrate its effectiveness and efficiency. Besides the standalone version for COBRAC, we also developed a related online web server for online calculation and visualization of the downloadable interactive results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom