z-logo
open-access-imgOpen Access
PecanPy: a fast, efficient and parallelized Python implementation of node2vec
Author(s) -
Renming Liu,
Arjun Krishnan
Publication year - 2021
Publication title -
bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.599
H-Index - 390
eISSN - 1367-4811
pISSN - 1367-4803
DOI - 10.1093/bioinformatics/btab202
Subject(s) - python (programming language) , computer science , implementation , embedding , biological network , theoretical computer science , software , cache , graph embedding , graph , parallel computing , artificial intelligence , bioinformatics , programming language , biology
Learning low-dimensional representations (embeddings) of nodes in large graphs is key to applying machine learning on massive biological networks. Node2vec is the most widely used method for node embedding. However, its original Python and C++ implementations scale poorly with network density, failing for dense biological networks with hundreds of millions of edges. We have developed PecanPy, a new Python implementation of node2vec that uses cache-optimized compact graph data structures and precomputing/parallelization to result in fast, high-quality node embeddings for biological networks of all sizes and densities.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom