Nebulosa recovers single-cell gene expression signals by kernel density estimation
Author(s) -
José Alquicira-Hernández,
Joseph E. Powell
Publication year - 2021
Publication title -
bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.599
H-Index - 390
eISSN - 1367-4811
pISSN - 1367-4803
DOI - 10.1093/bioinformatics/btab003
Subject(s) - kernel density estimation , kernel (algebra) , r package , computer science , computational biology , expression (computer science) , biology , pattern recognition (psychology) , artificial intelligence , mathematics , statistics , computational science , combinatorics , estimator , programming language
Data sparsity in single-cell experiments prevents an accurate assessment of gene expression when visualized in a low-dimensional space. Here, we introduce Nebulosa, an R package that uses weighted kernel density estimation to recover signals lost through drop-out or low expression.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom