z-logo
open-access-imgOpen Access
Network analyses in microbiome based on high-throughput multi-omics data
Author(s) -
Zhaoqian Liu,
Anjun Ma,
Ewy A. Mathé,
Marlena R. Merling,
Qin Ma,
Bingqiang Liu
Publication year - 2020
Publication title -
briefings in bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.204
H-Index - 113
eISSN - 1477-4054
pISSN - 1467-5463
DOI - 10.1093/bib/bbaa005
Subject(s) - metagenomics , microbiome , omics , data science , computer science , computational biology , biological network , biology , bioinformatics , biochemistry , gene
Together with various hosts and environments, ubiquitous microbes interact closely with each other forming an intertwined system or community. Of interest, shifts of the relationships between microbes and their hosts or environments are associated with critical diseases and ecological changes. While advances in high-throughput Omics technologies offer a great opportunity for understanding the structures and functions of microbiome, it is still challenging to analyse and interpret the omics data. Specifically, the heterogeneity and diversity of microbial communities, compounded with the large size of the datasets, impose a tremendous challenge to mechanistically elucidate the complex communities. Fortunately, network analyses provide an efficient way to tackle this problem, and several network approaches have been proposed to improve this understanding recently. Here, we systemically illustrate these network theories that have been used in biological and biomedical research. Then, we review existing network modelling methods of microbial studies at multiple layers from metagenomics to metabolomics and further to multi-omics. Lastly, we discuss the limitations of present studies and provide a perspective for further directions in support of the understanding of microbial communities.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom