Double nexus--Doublesex is the connecting element in sex determination
Author(s) -
Eveline C. Verhulst,
Louis van de Zande
Publication year - 2015
Publication title -
briefings in functional genomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.22
H-Index - 67
eISSN - 2041-2647
pISSN - 2041-2649
DOI - 10.1093/bfgp/elv005
Subject(s) - doublesex , biology , drosophila melanogaster , sexual differentiation , nexus (standard) , evolutionary biology , sexual dimorphism , melanogaster , gene , drosophila (subgenus) , function (biology) , genetics , zoology , rna , computer science , rna splicing , embedded system
In recent years, our knowledge of the conserved master-switch gene doublesex (dsx) and its function in regulating the development of dimorphic traits in insects has deepened considerably. Here, a comprehensive overview is given on the properties of the male- and female-specific dsx transcripts yielding DSX(F) and DSX(M) proteins in Drosophila melanogaster, and the many downstream targets that they regulate. As insects have cell-autonomous sex determination, it was assumed that dsx would be expressed in every somatic cell, but recent research showed that dsx is expressed only when a cell is required to show its sexual identity through function or morphology. This spatiotemporal regulation of dsx expression has not only been established in D. melanogaster but in all insect species studied. Gradually, it has been appreciated that dsx could no longer be viewed as the master-switch gene orchestrating sexual development and behaviour in each cell, but instead should be viewed as the interpreter for the sexual identity of the cell, expressing this identity only on request, making dsx the central nexus of insect sex determination.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom