A context dependent role for DNA methylation in bivalves
Author(s) -
Mackenzie Gavery,
Steven Roberts
Publication year - 2014
Publication title -
briefings in functional genomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.22
H-Index - 67
eISSN - 2041-2647
pISSN - 2041-2649
DOI - 10.1093/bfgp/elt054
Subject(s) - dna methylation , biology , genetics , epigenetics , transposable element , rna directed dna methylation , context (archaeology) , gene , methylation , epigenomics , genome , lineage (genetic) , dna , gene expression , paleontology
The function of DNA methylation in species such as bivalves where the limited amount of DNA methylation is predominantly found in gene bodies remains unclear. An emerging possible explanation is that the role of gene body DNA methylation is dependent on gene function, a potential phenomenon that has arisen from selective pressure on lineage-specific life history traits. In genes contributing to phenotypes that benefit from increased plasticity, the absence of DNA methylation could contribute to stochastic transcriptional opportunities and increased transposable element activity. In genes where regulated control of activity is essential, DNA methylation may also play a role in targeted, predictable genome regulation. Here, we review the current knowledge concerning DNA methylation in bivalves and explore the putative role of DNA methylation in both an evolutionary and ecological context.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom