Genome-wide approaches to understanding behaviour in Drosophila melanogaster
Author(s) -
Matt J. Neville,
Stephen F. Goodwin
Publication year - 2012
Publication title -
briefings in functional genomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.22
H-Index - 67
eISSN - 2041-2647
pISSN - 2041-2649
DOI - 10.1093/bfgp/els031
Subject(s) - drosophila melanogaster , biology , organism , model organism , context (archaeology) , genome , drosophila (subgenus) , computational biology , key (lock) , genomics , evolutionary biology , melanogaster , genetics , gene , ecology , paleontology
Understanding how an organism exhibits specific behaviours remains a major and important biological question. Studying behaviour in a simple model organism like the fruit fly Drosophila melanogaster has the advantages of advanced molecular genetics approaches along with well-defined anatomy and physiology. With advancements in functional genomic technologies, researchers are now attempting to uncover genes and pathways involved in complex behaviours on a genome-wide scale. A systems-level network approach, which will include genomic approaches, to study behaviour will be key to understanding the regulation and modulation of behaviours and the importance of context in regulating them.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom