z-logo
open-access-imgOpen Access
Proteins involved in establishment and maintenance of imprinted methylation marks
Author(s) -
Ruslan Strogantsev,
Anne C. FergusonSmith
Publication year - 2012
Publication title -
briefings in functional genomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.22
H-Index - 67
eISSN - 2041-2647
pISSN - 2041-2649
DOI - 10.1093/bfgp/els018
Subject(s) - biology , genomic imprinting , imprinting (psychology) , epigenetics , dna methylation , zinc finger , genetics , gene , methylation , differentially methylated regions , computational biology , transcription factor , gene expression
Epigenetic phenomena are being increasingly recognized to play key roles in normal mammalian development and disease. This is exemplified by the process of genomic imprinting whereby despite identical DNA sequence, the two parental chromosomes are not equivalent and show either maternal- or paternal-specific expression at a subset of genes in the genome. These patterns are set up by differential DNA methylation marking at the imprinting control regions in male and female germ line. In this review, we discuss the specific mechanisms by which these methyl marks are established and then selectively maintained throughout pre-implantation development. Specifically, we discuss the recent findings of a critical role played by a KRAB zinc-finger protein ZFP57 and its co-factor KAP1/TRIM28 in mediating both processes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom