From consensus structure prediction to RNA gene finding
Author(s) -
Stephan Wolf,
Ivo L. Hofacker
Publication year - 2009
Publication title -
briefings in functional genomics and proteomics
Language(s) - English
Resource type - Journals
eISSN - 1477-4062
pISSN - 1473-9550
DOI - 10.1093/bfgp/elp043
Subject(s) - rna , biology , nucleic acid structure , computational biology , nucleic acid secondary structure , gene , consensus sequence , sequence (biology) , genetics , conserved sequence , base sequence
Reliable structure prediction is a prerequisite for most types of bioinformatical analysis of RNA. Since the accuracy of structure prediction from single sequences is limited, one often resorts to computing the consensus structure for a set of related RNA sequences. Since functionally important RNA structures are expected to evolve much more slowly than the underlying sequences, the pattern of sequence (co-)variation can be exploited to dramatically improve structure prediction. Since a conserved common structure is only expected when the RNA structure is under selective pressure, consensus structure prediction also provides an ideal starting point for the de novo detection of structured non-coding RNAs. Here, we review different strategies for the prediction of consensus secondary structures, and show how these approaches can be used to predict non-coding RNA genes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom