z-logo
open-access-imgOpen Access
Apoptotic blocks and chemotherapy resistance: strategies to identify Bcl-2 protein signatures
Author(s) -
Özgür Gül,
Hüveyda Başağa,
Özgür Kütük
Publication year - 2008
Publication title -
briefings in functional genomics and proteomics
Language(s) - English
Resource type - Journals
eISSN - 1477-4062
pISSN - 1473-9550
DOI - 10.1093/bfgp/eln002
Subject(s) - biology , chemotherapy , apoptosis , programmed cell death , cancer research , cancer , mitochondrion , microbiology and biotechnology , genetics
Acquired or innate resistance to chemotherapy is a major drawback of cancer therapeutics, which is frequently seen in epithelial cancers. However, the molecular mechanisms underlying chemotherapy resistance remain poorly understood. The mitochondrial pathway is a critical death pathway common to many different types of chemotherapy. Aberrations in this pathway can result in resistance to chemotherapy. The Bcl-2 family of proteins control commitment to programmed cell death by mitochondrial apoptosis. In this review, we will summarize the strategies in determining the components of apoptotic defects responsible for chemotherapy resistance, mainly focused on Bcl-2 protein network.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom