One by one: Single molecule tools for genomics
Author(s) -
Paul H. Dear
Publication year - 2003
Publication title -
briefings in functional genomics and proteomics
Language(s) - English
Resource type - Journals
eISSN - 1477-4062
pISSN - 1473-9550
DOI - 10.1093/bfgp/1.4.397
Subject(s) - computational biology , genomics , biology , flexibility (engineering) , genome , genomic dna , dna sequencing , dna , cloning (programming) , genetics , computer science , gene , mathematics , statistics , programming language
Much of the effort in any genomics programme arises from the need to generate and purify large numbers of identical molecules, since most analytical tools rely on the analysis of bulk DNA. Biological steps such as bacterial cloning--commonly used to prepare bulk samples of defined DNA fragments--are capricious and introduce their own restrictions and distortions. The analysis of single molecules, either directly or by in vitro enzymatic amplification, makes possible the examination of native genomic DNA without the complications and restrictions of biological propagation. Techniques already exist for the in vitro propagation of genomic fragments and for genome mapping, and offer the advantages of speed, flexibility and predictable behaviour. Single molecule sequencing, for which many approaches are being developed, is more challenging, but offers even greater rewards in terms of throughput and read length.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom