Effect of high-dose 290 nm UV-B on resveratrol content in grape skins
Author(s) -
Tomohiro Tsurumoto,
Yasuo Fujikawa,
Yushi Onoda,
Masahiro Kamimori,
Kazuya Hiramatsu,
Hideo Tanimoto,
Daisaku Ohta,
Atsushi Okazawa
Publication year - 2022
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1093/bbb/zbac014
Subject(s) - resveratrol , content (measure theory) , food science , chemistry , materials science , mathematics , biochemistry , mathematical analysis
UV-C irradiation increases resveratrol content in grape skins, but it reaches a maximum at a certain UV-C dose. In contrast, UV-B has a weak resveratrol-enhancing effect at low doses, but it has not been investigated at high doses. In this study, we investigated the effect of high-dose UV-B on resveratrol contents in grape skins. Irradiation of Muscat Bailey A with 290 nm UV-B LED at 22 500 and 225 000 µmol m−2 increased the resveratrol contents in the grape skins by 2.1- and 9.0-fold, respectively, without significant increases in other phenolic compounds. The effect was also confirmed for 2 other cultivars: Shine Muscat and Delaware. Transcriptome analysis of the grape skins of Muscat Bailey A immediately after irradiation with UV-B at 225 000 µmol m−2 showed that genes related to biotic and abiotic stresses were upregulated. Hence, it was suggested that high-dose UV-B irradiation induces a stress response and specifically activates resveratrol biosynthesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom