z-logo
open-access-imgOpen Access
Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls?
Author(s) -
Fay B. Horak
Publication year - 2006
Publication title -
age and ageing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.014
H-Index - 143
eISSN - 1468-2834
pISSN - 0002-0729
DOI - 10.1093/ageing/afl077
Subject(s) - physical medicine and rehabilitation , balance (ability) , context (archaeology) , vestibular system , orientation (vector space) , rehabilitation , motor control , task (project management) , somatosensory system , psychology , sensory system , trunk , sensory cue , proprioception , cognitive psychology , computer science , medicine , neuroscience , engineering , mathematics , paleontology , ecology , geometry , systems engineering , biology
Postural control is no longer considered simply a summation of static reflexes but, rather, a complex skill based on the interaction of dynamic sensorimotor processes. The two main functional goals of postural behaviour are postural orientation and postural equilibrium. Postural orientation involves the active alignment of the trunk and head with respect to gravity, support surfaces, the visual surround and internal references. Sensory information from somatosensory, vestibular and visual systems is integrated, and the relative weights placed on each of these inputs are dependent on the goals of the movement task and the environmental context. Postural equilibrium involves the coordination of movement strategies to stabilise the centre of body mass during both self-initiated and externally triggered disturbances of stability. The specific response strategy selected depends not only on the characteristics of the external postural displacement but also on the individual's expectations, goals and prior experience. Anticipatory postural adjustments, prior to voluntary limb movement, serve to maintain postural stability by compensating for destabilising forces associated with moving a limb. The amount of cognitive processing required for postural control depends both on the complexity of the postural task and on the capability of the subject's postural control system. The control of posture involves many different underlying physiological systems that can be affected by pathology or sub-clinical constraints. Damage to any of the underlying systems will result in different, context-specific instabilities. The effective rehabilitation of balance to improve mobility and to prevent falls requires a better understanding of the multiple mechanisms underlying postural control.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom