The Effect of Whole-Grain Intake on Biomarkers of Subclinical Inflammation: A Comprehensive Meta-analysis of Randomized Controlled Trials
Author(s) -
Sepideh Rahmani,
Omid Sadeghi,
Mehdi Sadeghian,
Narges Sadeghi,
Bagher Larijani,
Ahmad Esmaillzadeh
Publication year - 2019
Publication title -
advances in nutrition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.362
H-Index - 90
eISSN - 2156-5376
pISSN - 2161-8313
DOI - 10.1093/advances/nmz063
Subject(s) - whole grains , medicine , subclinical infection , randomized controlled trial , refined grains , meta analysis , bran , whole blood , c reactive protein , gastroenterology , whole food , physiology , inflammation , food science , biology , raw material , ecology
Findings on the effect of whole-grain consumption on inflammatory biomarkers are conflicting. This study aimed to summarize available studies on the effects of whole-grain consumption on inflammatory biomarkers in adults. Online databases including PubMed, Scopus, ISI Web of Science, and Google Scholar were searched for relevant studies published up to January 2018, using relevant keywords. We included randomized controlled trials (RCTs) investigating the effect of whole-grain foods or diets high in whole-grain foods on markers of inflammation. Studies were selected if they had a control diet low in whole grains or diets without whole grains, whether calorie restricted or not. We did not include studies that examined the effect of individual grain components, including bran or germ, or fiber-based diets. Overall, 14 RCTs, with 1238 individuals aged ≥18 y, were included. Pooling 13 effect sizes from 11 RCTs on serum C-reactive protein (CRP) concentrations, we found no significant effect of whole-grain consumption on serum CRP concentrations [weighted mean difference (WMD): -0.29 mg/L; 95% CI: -1.10, 0.52 mg/L]. However, the beneficial effects of whole-grain intake on serum CRP concentrations were observed in studies in individuals with elevated serum concentrations of CRP and studies with isocaloric diets. Combining 11 effect sizes from 10 RCTs, we found no significant effect of whole-grain consumption on serum IL-6 concentrations (WMD: -0.08 pg/mL; 95% CI: -0.27, 0.11 pg/mL). Nevertheless, we observed a significant effect of whole-grain consumption on serum IL-6 concentrations in studies in unhealthy individuals. A nonsignificant effect of whole-grain intake on circulating serum TNF-α concentrations was also seen when we summarized effect sizes from 7 RCTs (WMD: -0.06 pg/mL; 95% CI: -0.25, 0.14 pg/mL). Such a nonsignificant effect was observed for serum concentrations of plasminogen activator inhibitor-1 (PAI-1) (WMD: -3.59; 95% CI: -1.25, 8.44 kU/L). Unlike observational studies, we found no significant effect of whole-grain consumption on serum concentrations of inflammatory cytokines, including serum concentrations of CRP, IL-6, TNF-α, and PAI-1. However, beneficial effects of whole grains were found in some subgroups. Given the high between-study heterogeneity, deriving firm conclusions is difficult.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom