z-logo
open-access-imgOpen Access
Perspective: The Saturated Fat–Unsaturated Oil Dilemma: Relations of Dietary Fatty Acids and Serum Cholesterol, Atherosclerosis, Inflammation, Cancer, and All-Cause Mortality
Author(s) -
Glen D. Lawrence
Publication year - 2021
Publication title -
advances in nutrition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.362
H-Index - 90
eISSN - 2156-5376
pISSN - 2161-8313
DOI - 10.1093/advances/nmab013
Subject(s) - inflammation , polyunsaturated fatty acid , cholesterol , saturated fat , arachidonic acid , endocrinology , medicine , oxidative stress , biology , biochemistry , fatty acid , enzyme
PUFAs are known to regulate cholesterol synthesis and cellular uptake by multiple mechanisms that do not involve SFAs. Polymorphisms in any of the numerous proteins involved in cholesterol homeostasis, as a result of genetic variation, could lead to higher or lower serum cholesterol. PUFAs are susceptible to lipid peroxidation, which can lead to oxidative stress, inflammation, atherosclerosis, cancer, and disorders associated with inflammation, such as insulin resistance, arthritis, and numerous inflammatory syndromes. Eicosanoids from arachidonic acid are among the most powerful mediators that initiate an immune response, and a wide range of PUFA metabolites regulate numerous physiological processes. There is a misconception that dietary SFAs can cause inflammation, although endogenous palmitic acid is converted to ceramides and other cell constituents involved in an inflammatory response after it is initiated by lipid mediators derived from PUFAs. This article will discuss the many misconceptions regarding how dietary lipids regulate serum cholesterol, the fact that all-cause death rate is higher in humans with low compared with normal or moderately elevated serum total cholesterol, the numerous adverse effects of increasing dietary PUFAs or carbohydrate relative to SFAs, as well as metabolic conversion of PUFAs to SFAs and MUFAs as a protective mechanism. Consequently, dietary saturated fats seem to be less harmful than the proposed alternatives.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom