
Molecular cloning, expression, and anti-tumor activity of a novel serine protease from <italic>Arenicola cristata</italic>
Author(s) -
Chunling Zhao,
Jiyu Ju
Publication year - 2014
Publication title -
acta biochimica et biophysica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.771
H-Index - 57
eISSN - 1745-7270
pISSN - 1672-9145
DOI - 10.1093/abbs/gmu020
Subject(s) - biology , serine protease , microbiology and biotechnology , protease , recombinant dna , complementary dna , masp1 , molecular cloning , biochemistry , serine proteinase inhibitors , peptide sequence , gene , enzyme
Arenicola cristata, a marine annelid, is a well-known and prized traditional Chinese medicine. However, the serine protease gene of A. cristata has not been cloned yet. In this study, a novel protease of A. cristata was cloned, sequenced, and expressed in Escherichia coli, and the functions of this recombinant protease were also investigated. The whole complementary DNA (cDNA) of this novel protease was of 980 bp in length and consisted of an open reading frame of 861 bp encoding 286 aa. Sequence analysis of the deduced amino acid sequence revealed that the protease belongs to the serine protease family. The active enzyme of the proposed A. cristata protease is composed of a signal peptide, a propeptide, and a mature polypeptide. The molecular weight of the recombinant mature protein was ~26 kDa after over-expression in E. coli. The recombinant protein significantly inhibited cell growth and induced cell apoptosis of esophageal squamous cell carcinoma (ESCC) in vitro, and reduced tumorigenicity in vivo. Furthermore, administration of the recombinant protein led to the activation of caspase-9 as well as down-regulation of Mcl-1 and Bcl-2. Taken together, our findings indicated that the recombinant serine protease of A. cristata could inhibit ESCC cell growth by mitochondrial apoptotic pathway and might act as a potential pharmacological agent for ESCC therapy.