z-logo
open-access-imgOpen Access
Emerging roles of miR-210 and other non-coding RNAs in the hypoxic response
Author(s) -
Xin Huang,
Jianhong Zuo
Publication year - 2014
Publication title -
acta biochimica et biophysica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.771
H-Index - 57
eISSN - 1745-7270
pISSN - 1672-9145
DOI - 10.1093/abbs/gmt141
Subject(s) - microrna , hypoxia (environmental) , cancer research , angiogenesis , biology , bioinformatics , pancreatic cancer , cancer , medicine , gene , genetics , chemistry , organic chemistry , oxygen
Hypoxia is a key component of the tumor microenvironment and represents a well-documented source of therapeutic failure in clinical oncology. Recent work has provided support for the idea that non-coding RNAs, and in particular, microRNAs, may play important roles in the adaptive response to low oxygen in tumors. Specifically, all published studies agree that the induction of microRNA-210 (miR-210) is a consistent feature of the hypoxic response in both normal and malignant cells. miR-210 is a robust target of hypoxia-inducible factors, and its overexpression has been detected in a variety of diseases with a hypoxic component, including most solid tumors. High levels of miR-210 have been linked to an in vivo hypoxic signature and to adverse prognosis in breast and pancreatic cancer patients. A wide variety of miR-210 targets have been identified, pointing to roles in mitochondrial metabolism, angiogenesis, DNA damage response, apoptosis, and cell survival. Such targets are suspected to affect the development of tumors in multiple ways; therefore, an increased knowledge about miR-210's functions may lead to novel diagnostic and therapeutic approaches in cancer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here