Open Access
Positive correlation between PPARγ/PGC-1α and γ-GCS in lungs of rats and patients with chronic obstructive pulmonary disease
Author(s) -
Jie Li,
Aiguo Dai,
Ruicheng Hu,
Liming Zhu,
Shengjie Tan
Publication year - 2010
Publication title -
acta biochimica et biophysica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.771
H-Index - 57
eISSN - 1745-7270
pISSN - 1672-9145
DOI - 10.1093/abbs/gmq071
Subject(s) - peroxisome proliferator activated receptor , copd , rosiglitazone , endocrinology , medicine , lipopolysaccharide , oxidative stress , coactivator , pathogenesis , peroxisome , downregulation and upregulation , receptor , reactive oxygen species , alpha (finance) , transcription factor , chemistry , gene , biochemistry , surgery , construct validity , patient satisfaction
Oxidative stress is one of the major pathogenesis of chronic obstructive pulmonary disease (COPD). gamma-Glutamylcysteine synthetase (gamma-GCS) is one of the paramount antioxidant enzymes in COPD. Peroxisome proliferator-activated receptor-gamma (PPARgamma) is a ligand-activated transcription factor, which is activated by specific ligands such as rosiglitazone (RGZ), exerting multiple biological effects. PPARgamma coactivator-1alpha (PGC-1alpha) is a PPARgamma coactivator, which binds to PPARgamma by induction of PPARgamma ligands, co-activating PPARgamma target genes. Growing evidence has suggested that PPARgamma/PGC-1alpha can regulate multiple antioxidant genes. However, the effect of PPARgamma/PGC-1alpha on gamma-GCS during the development of COPD remains unclear. Here, we measured the expression levels of PPARgamma, PGC-1alpha and gamma-GCS, gamma-GCS activity and reactive oxygen species (ROS) contents in lungs of rats treated by cigarette smoke (CS) + lipopolysaccharide (LPS) and CS + LPS + RGZ, as well as lungs of patients suffered from COPD. Compared with lungs from CS + LPS-treated rats, lungs of RGZ-treated rats demonstrated markedly lower ROS contents, and remarkable increase of gamma-GCS activity and increase of the expression levels of PPARgamma, PGC-1alpha, and gamma-GCS. Furthermore, compared with controls, expression levels of PPARgamma, PGC-1alpha, and gamma-GCS significantly increased in the lungs of mild COPD patients, and progressively decreased in lungs of patients with moderate and severe COPD. gamma-GCS protein was positively correlated with FEV(1)%. PPARgamma and PGC-1alpha proteins were positively correlated with gamma-GCS activity and mRNA level. In conclusion, gamma-GCS showed compensatory upregulation in the early stage of COPD, which progressively decompensate with increasing COPD severity. The activation of the PPARgamma/PGC-1alpha pathway may protect against COPD progression by upregulating gamma-GCS and relieving oxidative stress.