Open Access
Large odd order character sums and improvements of the Pólya-Vinogradov inequality
Author(s) -
Youness Lamzouri,
Alexander P. Mangerel
Publication year - 2022
Publication title -
transactions of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.798
H-Index - 100
eISSN - 1088-6850
pISSN - 0002-9947
DOI - 10.1090/tran/8607
Subject(s) - algorithm , artificial intelligence , computer science
For a primitive Dirichlet character χ \chi modulo q q , we define M ( χ ) = max t | ∑ n ≤ t χ ( n ) | M(\chi )=\max _{t } |\sum _{n \leq t} \chi (n)| . In this paper, we study this quantity for characters of a fixed odd order g ≥ 3 g\geq 3 . Our main result provides a further improvement of the classical Pólya-Vinogradov inequality in this case. More specifically, we show that for any such character χ \chi we have M ( χ ) ≪ ε q ( log q ) 1 − δ g ( log log q ) − 1 / 4 + ε , \begin{equation*} M(\chi )\ll _{\varepsilon } \sqrt {q}(\log q)^{1-\delta _g}(\log \log q)^{-1/4+\varepsilon }, \end{equation*} where δ g ≔ 1 − g π sin ( π / g ) \delta _g ≔1-\frac {g}{\pi }\sin (\pi /g) . This improves upon the works of Granville and Soundararajan [J. Amer. Math. Soc. 20 (2007), pp. 357–384] and of Goldmakher [Algebra Number Theory 6 (2012), pp. 123–163]. Furthermore, assuming the Generalized Riemann Hypothesis (GRH) we prove that M ( χ ) ≪ q ( log 2 q ) 1 − δ g ( log 3 q ) − 1 4 ( log 4 q ) O ( 1 ) , \begin{equation*} M(\chi ) \ll \sqrt {q} \left (\log _2 q\right )^{1-\delta _g} \left (\log _3 q\right )^{-\frac {1}{4}}\left (\log _4 q\right )^{O(1)}, \end{equation*} where log j \log _j is the j j -th iterated logarithm. We also show unconditionally that this bound is best possible (up to a power of log 4 q \log _4 q ). One of the key ingredients in the proof of the upper bounds is a new Halász-type inequality for logarithmic mean values of completely multiplicative functions, which might be of independent interest.