z-logo
open-access-imgOpen Access
Finite time blow-up for the inhomogeneous equation 𝑒_{𝑑}=Δ𝑒+π‘Ž(π‘₯)𝑒^{𝑝}+πœ†πœ™ in 𝑅^{𝑑}
Author(s) -
Ross G. Pinsky
Publication year - 1999
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/s0002-9939-99-05164-3
Subject(s) - parenthesis , algorithm , mathematics , philosophy , linguistics
We consider the inhomogeneous equation a m p ; u t = Ξ” u + a ( x ) u p + Ξ» Ο• ( x ) in R d , t ∈ ( 0 , T ) , a m p ; u ( x , 0 ) = f ( x ) , \begin{equation*} \begin {split} & u_{t}=\Delta u+a(x)u^{p}+\lambda \phi (x) \text {in} R^{d}, t\in (0,T),\\ &u(x,0)=f(x),\end{split}\end{equation*} where a , Ο• ≩ 0 a,\phi \gneqq 0 , Ξ» > 0 \lambda >0 and f β‰₯ 0 f\ge 0 , and give criteria on p , d , a p,d,a , and Ο• \phi which determine whether for all Ξ» \lambda and all f f the solution blows up in finite time or whether for Ξ» \lambda and f f sufficiently small, the solution exists for all time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here