
Finite time blow-up for the inhomogeneous equation π’_{π‘}=Ξπ’+π(π₯)π’^{π}+ππ in π
^{π}
Author(s) -
Ross G. Pinsky
Publication year - 1999
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/s0002-9939-99-05164-3
Subject(s) - parenthesis , algorithm , mathematics , philosophy , linguistics
We consider the inhomogeneous equation a m p ; u t = Ξ u + a ( x ) u p + Ξ» Ο ( x ) in R d , t β ( 0 , T ) , a m p ; u ( x , 0 ) = f ( x ) , \begin{equation*} \begin {split} & u_{t}=\Delta u+a(x)u^{p}+\lambda \phi (x) \text {in} R^{d}, t\in (0,T),\\ &u(x,0)=f(x),\end{split}\end{equation*} where a , Ο β© 0 a,\phi \gneqq 0 , Ξ» > 0 \lambda >0 and f β₯ 0 f\ge 0 , and give criteria on p , d , a p,d,a , and Ο \phi which determine whether for all Ξ» \lambda and all f f the solution blows up in finite time or whether for Ξ» \lambda and f f sufficiently small, the solution exists for all time.