
Matrix presentations of braids and applications
Author(s) -
Sang Lee
Publication year - 1999
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/s0002-9939-99-04948-5
Subject(s) - braid , matrix (chemical analysis) , algebra over a field , pure mathematics , mathematics , computer science , materials science , composite material
We show that there exists a one-to-one correspondence between the class of certain block tridiagonal matrices with the entries − 1 , 0 , -1, 0, or 1 1 and the free monoid generated by 2 n 2n generators σ 1 , ⋯ , σ n , σ 1 − 1 , ⋯ , σ n − 1 \sigma _{1}, \cdots ,\sigma _{n}, \sigma _{1}^{-1},\cdots , \sigma _{n}^{-1} and relation σ i ± 1 σ j ± 1 = σ j ± 1 σ i ± 1 ( | i − j | ≥ 2 ) \sigma _{i}^{\pm 1}\sigma _{j}^{\pm 1} = \sigma _{j}^{\pm 1}\sigma _{i}^{\pm 1}~ (|i-j| \geq 2) and give some applications for braids. In particular, we give new formulation of the reduced Alexander matrices for closed braids.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom