
Integer sets with distinct subset sums
Author(s) -
Péter E. Frenkel
Publication year - 1998
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/s0002-9939-98-04576-6
Subject(s) - integer (computer science) , generalization , conjecture , mathematics , simple (philosophy) , combinatorics , set (abstract data type) , radical of an integer , finite set , discrete mathematics , prime factor , computer science , prime (order theory) , mathematical analysis , philosophy , epistemology , programming language
We give a simple, elementary new proof of a generalization of the following conjecture of Paul Erdős: the sum of the elements of a finite integer set with distinct subset sums is less than 2.