
Atomic characterization of the Hardy space 𝐻¹_{𝐿}(ℝ) of one-dimensional Schrödinger operators with nonnegative potentials
Author(s) -
Wojciech Czaja,
Jacek Zienkiewicz
Publication year - 2007
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/s0002-9939-07-09096-x
Subject(s) - algorithm , annotation , artificial intelligence , computer science
Given a Schrödinger operator L = d 2 d x 2 − V ( x ) L=\frac {d^2}{dx^2}-V(x) on R \mathbb R with nonnegative potential V V , we present an atomic characterization of the associated Hardy space H L 1 ( R ) H_L^1 (\mathbb R) .