
Billingsley’s packing dimension
Author(s) -
Manav Das
Publication year - 2007
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/s0002-9939-07-09069-7
Subject(s) - parenthesis , algorithm , artificial intelligence , computer science , mathematics , philosophy , linguistics
For a stochastic process on a finite state space, we define the notion of a packing measure based on the naturally defined cylinder sets. For any two measures ν \nu , γ \gamma , corresponding to the same stochastic process, if \[ F ⊆ { ω ∈ Ω : lim n log γ ( c n ( ω ) ) log ν ( c n ( ω ) ) = θ } , F \subseteq \left \{ \omega \in \Omega : \lim _{n} \frac {\log \gamma (c_{n}(\omega ))}{\log \nu (c_{n}(\omega ))} = \theta \right \}, \] then we prove that \[ D i m ν ( F ) = θ D i m γ ( F ) . {\rm {Dim}}_{\nu }(F) = \theta ~{\rm {Dim}}_{\gamma }(F). \]