
The global attractivity of the rational difference equation π¦_{π}=π΄+(\frac{π¦_{π-π}}π¦_{π-π})^{π}
Author(s) -
Kenneth S. Berenhaut,
John D. Foley,
Stevo SteviΔ
Publication year - 2007
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/s0002-9939-07-08860-0
Subject(s) - algorithm , computer science
This paper studies the behavior of positive solutions of the recursive equation y n = A + ( y n β k y n β m ) p , n = 0 , 1 , 2 , β¦ , \begin{eqnarray} y_n=A+\left (\frac {y_{n-k}}{y_{n-m}}\right )^p,\quad n=0,1,2,\ldots , \nonumber \end{eqnarray} with y β s , y β s + 1 , β¦ , y β 1 β ( 0 , β ) y_{-s},y_{-s+1}, \ldots , y_{-1} \in (0, \infty ) and k , m β { 1 , 2 , 3 , 4 , β¦ } k,m \in \{1,2,3,4,\ldots \} , where s = max { k , m } s=\max \{k,m\} . We prove that if g c d ( k , m ) = 1 \mathrm {gcd}(k,m) = 1 , and p β€ min { 1 , ( A + 1 ) / 2 } p\leq \min \{1,(A+1)/2\} , then y n y_n tends to A + 1 A+1 . This complements several results in the recent literature, including the main result in K.Β S.Β Berenhaut, J.Β D.Β Foley and S.Β SteviΔ, The global attractivity of the rational difference equation y n = 1 + y n β k y n β m y_{n}=1+\frac {y_{n-k}}{y_{n-m}} , Proc. Amer. Math. Soc. , 135 (2007) 1133β1140.