z-logo
open-access-imgOpen Access
A sharp inequality for the logarithmic coefficients of univalent functions
Author(s) -
Oliver Roth
Publication year - 2007
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/s0002-9939-07-08660-1
Subject(s) - algorithm , mathematics
We prove the sharp inequality \[ ∑ k = 1 ∞ ( k k + 1 ) 2 | c k ( f ) | 2 ≤ 4 ∑ k = 1 ∞ ( k k + 1 ) 2 1 k 2 = 2 π 2 − 12 3 \sum \limits _{k=1}^{\infty } \left ( \frac {k}{k+1} \right )^2 |c_k(f)|^2 \le 4 \sum _{k=1}^{\infty } \left ( \frac {k}{k+1} \right )^2 \frac {1}{k^2}=\frac {2 \, \pi ^2-12}{3} \] for the logarithmic coefficients c k ( f ) c_k(f) of a normalized univalent function f f in the unit disk.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here