
The π-exponent of the πΎ(1)_{*}-local spectrum Ξ¦ππ(π)
Author(s) -
Michael A. Fisher
Publication year - 2003
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/s0002-9939-03-06936-3
Subject(s) - parenthesis , algorithm , exponent , annotation , artificial intelligence , type (biology) , computer science , mathematics , biology , linguistics , philosophy , ecology
Let p p be a fixed odd prime. In this paper we prove an exponent conjecture of Bousfield, namely that the p p -exponent of the spectrum Ξ¦ S U ( n ) \Phi SU(n) is ( n β 1 ) + Ξ½ p ( ( n β 1 ) ! ) (n-1) + \nu _p((n-1)!) for n β₯ 2 n \geq 2 . It follows from this result that the p p -exponent of Ξ© q S U ( n ) β¨ i β© \Omega ^{q} SU(n) \langle i \rangle is at least ( n β 1 ) + Ξ½ p ( ( n β 1 ) ! ) (n-1) + \nu _p((n-1)!) for n β₯ 2 n \geq 2 and i , q β₯ 0 i,q \geq 0 , where S U ( n ) β¨ i β© SU(n) \langle i \rangle denotes the i i -connected cover of S U ( n ) SU(n) .