z-logo
open-access-imgOpen Access
Global existence for the critical generalized KdV equation
Author(s) -
Guilherme D. da Fonseca,
Felipe Linares,
Gustavo Ponce
Publication year - 2002
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/s0002-9939-02-06871-5
Subject(s) - algorithm , computer science
We discuss results regarding global existence of solutions for the critical generalized Korteweg-de Vries equation, \[ u t + u x x x + u 4 u x = 0 , x , t ∈ R . u_t+u_{xxx}+u^4\,u_x=0,\quad x,\,t\in \mathbb {R}. \] The theory established shows the existence of global solutions in Sobolev spaces with order below the one given by the energy space H 1 ( R ) H^1(\mathbb {R}) , i.e. solutions corresponding to data u 0 ∈ H s ( R ) u_0\in H^s(\mathbb {R}) , s > 3 / 4 s>3/4 , with ‖ u 0 ‖ L 2 > ‖ Q ‖ L 2 \|u_0\|_{L^2}>\|Q\|_{L^2} , where Q Q is the solitary wave solution of the equation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here