
Linear systems on abelian varieties of dimension 2đť‘”+1
Author(s) -
Jaya Nn Iyer
Publication year - 2001
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/s0002-9939-01-06264-5
Subject(s) - algorithm , computer science , artificial intelligence
We show that polarisations of type ( 1 , . . . , 1 , 2 g + 2 ) (1,...,1,2g+2) on g g -dimensional abelian varieties are never very ample, if g ≥ 3 g\geq 3 . This disproves a conjecture of Debarre, Hulek and Spandaw. We also give a criterion for non-embeddings of abelian varieties into 2 g + 1 2g+1 -dimensional linear systems.