z-logo
open-access-imgOpen Access
The Fefferman-Stein type inequality for the Kakeya maximal operator
Author(s) -
Hitoshi Tanaka
Publication year - 2001
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/s0002-9939-01-06069-5
Subject(s) - mathematics , inequality , type (biology) , operator (biology) , mathematical economics , pure mathematics , mathematical analysis , geology , chemistry , paleontology , biochemistry , repressor , transcription factor , gene
Let K δ K_\delta , 0 > δ >> 1 0>\delta >>1 , be the Kakeya maximal operator defined as the supremum of averages over tubes of the eccentricity δ \delta . We shall prove the so-called Fefferman-Stein type inequality for K δ K_\delta , \[ ‖ K δ f ‖ L p ( R d , w ) ≤ C d , p ( 1 δ ) d / p − 1 ( log ⁡ ( 1 δ ) ) α ( d ) ‖ f ‖ L p ( R d , K δ w ) , \|K_\delta f\|_{L^p(\mathbf R^d,w)} \le C_{d,p} (\frac {1}{\delta })^{d/p-1} (\log (\frac {1}{\delta }))^{\alpha (d)} \|f\|_{L^p(\mathbf R^d,K_\delta w)}, \] in the range ( 1 > p ≤ ( d 2 − 2 ) / ( 2 d − 3 ) (1>p\le (d^2-2)/(2d-3) , d ≥ 3 d\ge 3 , with some constants C d , p C_{d,p} and α ( d ) \alpha (d) independent of f f and the weight w w .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here