z-logo
open-access-imgOpen Access
The isomorphic Kottman constant of a Banach space
Author(s) -
Jesús M. F. Castillo,
Manuel González,
Tomasz Kania,
Pier Luigi Papini
Publication year - 2020
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/proc/15079
Subject(s) - mathematics , banach space , constant (computer programming) , infimum and supremum , regular polygon , space (punctuation) , combinatorics , mathematical analysis , pure mathematics , discrete mathematics , geometry , computer science , programming language , linguistics , philosophy
We show that the Kottman constant $K(\cdot)$, together with its symmetric and finite variations, is continuous with respect to the Kadets metric, and they are log-convex, hence continuous, with respect to the interpolation parameter in a complex interpolation schema. Moreover, we show that $K(X)\cdot K(X^*)\geqslant \sqrt{2}$ for every infinite-dimensional Banach space $X$. We also consider the isomorphic Kottman constant (defined as the infimum of the Kottman constants taken over all renormings of the space) and solve the main problem left open in [CaGoPa17], namely that the isomorphic Kottman constant of a twisted-sum space is the maximum of the constants of the respective summands. Consequently, the Kalton--Peck space may be renormed to have Kottman's constant arbitrarily close to $\sqrt{2}$. For other classical parameters, such as the Whitley and the James constants, we prove the continuity with respect to the Kadets metric.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom