Deformation theory of contact Lie algebras as double extensions
Author(s) -
María Alejandra Alvarez,
M. C. Rodríguez-Vallarte,
G. Salgado
Publication year - 2020
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/proc/15040
Subject(s) - lie algebra , quadratic equation , mathematics , deformation (meteorology) , algebra over a field , pure mathematics , adjoint representation of a lie algebra , lie conformal algebra , affine lie algebra , work (physics) , physics , current algebra , geometry , quantum mechanics , meteorology
The purpose of this work is to completely characterize contact Lie algebras, i.e., linear and quadratic deformations of the Heisenberg Lie algebra, by means of double extensions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom