z-logo
open-access-imgOpen Access
Cardinal coefficients related to surjectivity, Darboux, and Sierpiński-Zygmund maps
Author(s) -
Krzysztof Ciesielski,
José L. Gámez-Merino,
Lucian Mazza,
Juan B. SeoaneSepúlveda
Publication year - 2016
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/proc/13294
Subject(s) - mathematics , sierpinski triangle , pure mathematics , mathematical analysis , fractal
We investigate the additivity A and lineability L cardinal coeffiients for the following classes of functions: ES\SES of everywhere surjective functions that are not strongly everywhere surjective, Darboux-like, Sierpinski-Zygmund, surjective, and their corresponding intersections. The classes SES and ES have been shown to be 2c-lineable. In contrast, although we prove here that ES\SES is c+-lineable, it is still unclear whether it can be proved in ZFC that ES\SES is 2c-lineable. Moreover, we prove that if c is a regular cardinal number, then A(ES\SES) ≤ c. This shows that, for the class ES\SES, there is an unusually large gap between the numbers A and L

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom