Noncommutative solenoids and the Gromov-Hausdorff propinquity
Author(s) -
Frédéric Latrémolière,
Judith Packer
Publication year - 2016
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/proc/13229
Subject(s) - noncommutative geometry , mathematics , hausdorff space , pure mathematics , noncommutative quantum field theory , solenoid , space (punctuation) , metric space , noncommutative algebraic geometry , quantum , mathematical analysis , quantum mechanics , physics , linguistics , philosophy
We prove that noncommutative solenoids are limits, in the sense of the Gromov-Hausdorff propinquity, of quantum tori. From this observation, we prove that noncommutative solenoids can be approximated by finite dimensional quantum compact metric spaces, and that they form a continuous family of quantum compact metric spaces over the space of multipliers of the solenoid, properly metrized.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom