Topology, intersections and flat modules
Author(s) -
Carmelo A. Finocchiaro,
Dario Spirito
Publication year - 2016
Publication title -
proceedings of the american mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.968
H-Index - 84
eISSN - 1088-6826
pISSN - 0002-9939
DOI - 10.1090/proc/13131
Subject(s) - annotation , conjecture , type (biology) , semantics (computer science) , intersection (aeronautics) , algorithm , ideal (ethics) , computer science , linear subspace , mathematics , discrete mathematics , artificial intelligence , pure mathematics , programming language , ecology , philosophy , epistemology , engineering , biology , aerospace engineering
It is well known that, in general, multiplication by an ideal I does not commute with the intersection of a family of ideals, but that this fact holds if I is flat and the family is finite. We generalize this result by showing that finite families of ideals can be replaced by compact subspaces of a natural topological space, and that ideals can be replaced by submodules of an epimorphic extension of a base ring. As a particular case, we give a new proof of a conjecture by Glaz and Vasconcelos
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom